
October 25, 2006

A new Mono GC 

Paolo Molaro
lupus@novell.com



 

2

 

Current GC: why Boehm

Ported to the major architectures and systems
Featurefull
Very easy to integrate

• Handles managed pointers in unmanaged land
• Some support for typed objects
• Finalization semantics mostly match
• Weak references

Hightly tuned
Thread-local alloc



 

3

 

Current GC: why not

We don't need or use some of the features
• Incremental (handling of signals...)
• Resource usage (public API)

Finalization semantics not the same as needed
• Finalization of objects involved in cycles (which order?)

Weak reference support
• Track resurrection

Heap fragmentation
Zeroing overhead (atomic alloc ...)
Pause times



 

4

 

New GC: needs

Exact finalization and weak reference 
semantics
Small heap sizes and low-pause time (desktop 
apps)
Object pinning (automatic and API-controlled)
Fast allocation (bump-pointer and inlinable in 
managed code)
Large object handling
Precise type tracking



 

5

 

New GC: needs (continued)

Interior pointers on the stack
Appdomain unload issues (free all the objects 
in the appdomain)
Allocation of non-moving objects (interned 
strings...)
Nice to the user (no big memory chunk)
Still allow easy embedding of Mono

• Keeping the only reference to a managed object in the C stack 
is fine

Thread support



 

6

 

Implementation

Generational
• Old generation and nursery (the new generation)

Moving
• From the nursery to the old generation
• Compacting of the old generation

Stop the world collection
Large object space

• Collected with mark&sweep during major collections

Fixed heap
• For interned strings (and maybe later other types)
• Collected with mark&sweep during major collections



 

7

 

GetHashCode ()

Objects now can move, can't use the object 
address as hash code
Data stored in the lock word of the header
When the object is locked, the hash code is 
moved inside the fat lock structure
Load+check+shift in the fast path

• Additional check + load otherwise

Interlocked op when first setting the hash
mono_object_hash() for runtime hash tables



 

8

 

Pinned objects

How to create them:
• corlib API: GCHandle
• embedding API: mono_gchandle_new (obj, TRUE)
• fixed C# statement (PINNED flag for local IL vars)
• during P/Invoke calls

Additional cases
• objects and pointers found in the untyped C stack of the 

runtime and embedding applications
• objects the runtimes doesn't want to move (interned strings, 

Thread objects, currently Type handles)

Few of them in practice



 

9

 

Pinned object issues

Will fragment the heap
Will cause more collections
Will slowdown allocations and collections
Make sure you pin objects only when really 
needed and for as little time as possible
Runtime enhancements:

• Type information about registers and managed stack frames 
will allow to consider the referenced objects not pinned

• Unmanaged stack frames will still pin referenced objects for 
hassle-free runtime code and mono embedding



 

10

 

Pinned objects: finding them

Given a (possibly interior) pointer
Objects are allocated sequentially

• Need to start from the beginning of an heap area, visiting each 
object until the correct one is found

• During allocation, every 4KB save the object start
– Need to scan at most 4 KB of memory to find object
– 4 KB size is subject to change
– The pinning addresses are sorted and the last pinned object is cached so 

usually this scanning is very fast

When found set the PIN flag or add to pinned 
objects array



 

11

 

The nursery

Most objects born here
Typically 512 KB - 2 MB for common apps

• Servers might want several Mbs

Bump-pointer allocation style
• Fast and can be inlined in managed code

When full, trigger a minor collection
• Unless a major collection is needed (old generation is full, too)

Divided in smaller chunks due to fragmentation
or thread-local allocation



 

12

 

Nursery and pinning

Pinned objects fragment the nursery
Chunks of free nursery space between pinned 
objects used for allocations
When the nursery is completely pinned, 
allocate objects in the old generation

• Alternatives include: enlarge the nursery, allocate a new 
nursery

Pin objects only when aboslutely needed for 
short amouts of time
Track references precisely on the stack



 

13

 

Minor collection

Stop the world
Identify pinning objects
Scan the roots (including pinned objects)

• Copy to old generation as you go
• Place pointer to new copy in the old object's place

Scan the copied objects (they are roots, too)
• Check the finalization and weak-ref lists

Prepare for new allocs
Restart the world
Poke the finalizer thread



 

14

 

Stopping the world

Needed to not allow the mutators to see non-
coherent data in objects

• forwarding pointers
• flags in the object header
• two copies of the same object

No support for safe points (yet)
Implemented with signals

• win32/OSX have proper OS support

Less than 1ms for heaps up to 100MB on1.6PM
Parallelize major collection later



 

15

 

The roots

Static managed variables
Registered roots (runtime and embedding data 
strutcures)
Handle tables
Remembered sets

• Old-generation objects referencing nursery objects

Pinned objects
Runtime stack

• Need type info for registers and managed stack frames



 

16

 

How to copy an object

Ensure we have enough room in the old 
generation
We need to ensure every reference points to 
the new object
For each pointer field

• obj.field = copy_object (obj.field);
• Place a forwarding pointer in the header

– It's the pointer to the new home of the object

• If an object has a forwarding pointer it's already copied
• Pinned objects return the same pointer in copy_object()



 

17

 

The marking stack

We need to recursively copy the objects 
referenced by copied object
Recursion not a safe thing in the GC

• The runtime stack could be very small and the recursion very 
deep

The copied objects area is an explicit stack
Once the roots are scanned, scan the copied 
area, until no more objects are copied

• Gray objects are marked but the fields have not been traced



 

18

 

Finalization

When the roots are scanned, the non-copied 
objects are garbage

• unless they are pinned or need finalization

Copy finalizable objects to the old generation 
so they survive

• Recursively copy from their fields, too
• Loop until no more finalizable objects are found dead

Put finalizable objects in a separate list
Weak-refs don't need copying

• handled immediately



 

19

 

Prepare for new allocs

Create list of free fragments in nursery
memset the memory to 0 bytes

• too much overhead doing it at each object alloc
• too much overhead doing it for the whole nursery

– touches too much memory and trashes the data cache
– do it only a fragment at a time

• we need unused nursery areas to be zeroed before collections 
for the pinned-objects finding algorithm

Assign fragments to threads
• to each as much as they need (and resources allow)



 

20

 

Major collection

Currently copy-based
• Later use mark/copy to reduce memory requirements

Identify pinned objects in the whole heap
Remembered sets are cleared
Scan the roots as usual

• Large and fixed objects are just marked by setting a flag in the 
object header

Sweep unmarked objects
Free unused sections
Finalize/Prepare/Restart



 

21

 

Object sweeping

Walk the list of large objects and free the 
unmarked ones
Unset the mark flag for the others
Fixed objects are in pinned chunks

• freed by putting in a free-list
• unmarked as well

Both the large object list and the number of 
fixed objects should be small



 

22

 

Memory sections

Heap divided in sections
More flexible than using a big virtual area
Easier for the user

• Expands as needed
• Fair to other code in the same program competing for virtual 

address space

Of course it's harder to implement
• some performance issues
• likely the default on 64 bit systems (huge virtual memory 

space)



 

23

 

Pinned chunks

Data structure for GC-internal data and for fixed 
object allocation
Only for small objects
Each page has objects of same size
Allocation using freelists
Page assigned to a size as needed
Limited fragmentation issues (few sizes, mostly 
runtime and GC-controlled)
Mini-Boehm GC included



 

24

 

Large objects

Expensive to move
Currently used for object size >= 64 KB
Collected only during major collections

• using mark and sweep

Allocated with mmap
• already cleared, no need to touch pages

Need for tuning knobs
• how much memory do we allow in large objects before a major 

collection?



 

25

 

Object layout

Keep references close to each other
• Better cache locality
• Better encoding of reference bitmaps

Degenerate cases...
• Doctor, it hurts
• We should set reasonable limits for untrusted code

The JVM does have a much better time with 
this...

• no structs
• no fixed or sequential layout



 

26

 

GC descriptors

Several types needed:
• strings
• vectors
• bitmaps
• run-length encoding
• large bitmaps

Fast handling of ptrfree objects and arrays
Stored in MonoVTable



 

27

 

Write barriers

Keep track of references to nursery objects 
from the old generation: they become roots for 
a minor collection
Complicated by structs

• a reference can be stored in the heap or on the stack
• copy of structs

Custom ones optimized for each case
• array copy
• struct handling



 

28

 

API/ABI changes

A few simple changes needed for runtime 
hackers and embedders

• Objects can move, so the GC needs to know about all 
references or they must be pinned someway

– No more valid to know an object is kept alive and store a reference in malloc 
memory

• Field and array element setting must go through write barriers
– Only references or value types with references

• Interior pointer issues
– A pointer to the end of an object is not a valid interior pointer

• New API:
– MONO_OBJECT_SETREF (object, fieldname, value)
– mono_array_setref (array, index, value)



 

29

 

TODO list

Use mark-compact for old generation collection
• Reduces memory required for old gen collection

Use mark-table based write barriers
• Faster and inlineable

Thread-local allocation
• Removes lock overhead

Inline allocation in jitted managed code
• No managed <> unmanaged transitions

Precise stack walk
• Reduce risk of false positive GC references

Fix the runtime



 

30

 

Preliminary results

Still untuned, so expect improvements
• write barriers, thread-local alloc, alloc code inlining

Some (rare:-) test cases: 5-7x speedup
Usually (with thread-local-alloc): 10-50% 
speedup
Usually smaller heap (but minimum is larger)
Degenerate cases:

• many pinned objects
• many reference stores (write barriers)
• long linked lists



 

31

 

Kernel help

Thread start/stop
• need to be able to get context of stopped thread

mprotect (addr, size, MAP_DISCARD);
• drop the pages from memory
• will be cleared when read again

Page tables dirty bit access
• More coarse write barrier support
• No need for write barriers
• Fixed (and possibly too large) mark window



 

32

 

Compacting Garbage Collector.



 

33

 

Compacting Collector



 

34

 

Nursery.



 

35

 

Nursery and Pinned Objects.


