
October 24, 2006

Mono Meeting.

Miguel de Icaza
miguel@novell.com



 

2

 

Mono, Novell and the Community.

Mono would not exist without the community:
• Individual contributors.
• Companies using Mono.
• Organizations using Mono. 
• Companies using parts of Mono.
• Google Summer of Code.

Introductions. 



 

3

 

Goals of the Meeting.

A chance to meet.
• Most of the Novell/Mono team is here.
• Many contributors are here.
• Various breaks to talk.

Talk to others!
• Introduce yourself, ask questions.

Talk to us!
• Frank Rego, Mono's Product Manager is here.
• Tell us what you need in Mono.
• Tell us about how you use Mono.



Project Status



 

5

 

Goals

Originally:
• Improve our development platform on Linux.

As the community grew:
• Expand to support Microsoft APIs.

As Mono got more complete:
• Provide a complete cross platform runtime.
• Allow Windows developers to port to Linux.



 

6

 

Mono Stacks and Goals.

ASP.NET

ADO.NET

Windows.Forms

Mono Runtime
(Implementation of ECMA #335)

MySQL/Postgress

Microsoft Compatibility Libraries Mono Libraries

Mozilla

Apache Mono

Novell LDAP

Java Compatibility

Evolution#

Novell iFolder

GTK#

Gnome#

ASP.NET

ADO.NET

Windows.Forms

Mono Runtime
(Implementation of ECMA #335)

MySQL/Postgress

Microsoft Compatibility Libraries Mono Libraries

Mozilla

Apache Mono

OpenOffice

Java Compatibility

Evolution#

Novell APIs:
iFolder, LDAP, Identity

Desktop: GTK# 

Cecil

Google APIs



 

7

 

Platforms, CIL, Code Generation.



API space



Mono 1.0: July 2004
“T-Bone”



Mono 1.2: November 2006
“Rump steak”



 

11

 

Mono 1.2 bits.

Reliability and 
scalability:

• ZenWorks and iFolder 
pushed Mono on the server.

• xsp 1.0: 8 request/second.
• xsp 1.2: 250 

request/second.

GUI
• Windows Forms 1.1 debuts.
• Gtk# 2.x series: updated 

binding, updated to Gtk+ 2.8

C# 2.0, .NET 2.0
• Complete.
• With VM support.
• Some 2.0 API support.
• IronPython works.

Debugger:
• x86 and x86-64 debugger.
• CLI-only, limited in 

scenarios (no xsp).
• Needs usability testing.



Mono 2.0: Q3 2007
“Sirloin”



 

13

 

Sirloin Directions.

Mono 2.0: Core.
• .NET 2.0 API support.
• CAS available.
• New optimizations.
• Compacting GC.
• MonoDevelop.
• MonoDevelop + Debugger.

Improve Support:
• Windows integration, build.
• Visual Studio integration.
• MacOS X and X-Code.

Gtk#
• Databinding support.
• Others (Mike's talk).

Languages:
• Ship Rolf's VB compiler
• GCC-based compilers.



Announcement
Olive.



 

15

 

Olive Project

Under development, not ready, not done.
• Contributions, as always, welcomed.

Today we release:
• Basic Indigo implementation.
• Basic Infocard implementation.

Previously done:
• System.Query, System.Xml.XLinq
• System.Workflow
• System.Windows.Serialization (Xaml support and xamlc).



 

16

 

Implementing an API.

Based on MS documentation.
• Documentation is sometimes incomplete, not clear.
• Might be missing details.
• The programmer might not understand things.

Test-based implementation:
• Write NUnit test case to explore the API
• Make the test run on Windows.
• Serves as blueprint for Mono implementation.



 

17

 

Tests in Mono.

As of September, 2006:

Class Library Tests:
• 91,000 feature tests for
• 2,227 classes

Compiler tests:
• 1,100 positive tests
• 1,500 negative tests



Scripting



 

19

 

Scripting: Higher Level Programming.

John Ousterhout: “ Scripting: Higher Level Programming for the 21st 

Century”, 1998:



 

20

 

Embeddable Runtime.

Mono Virtual Machine:
• Embeddable in C/C++ applications.
• ~4Mb footprint for basic setup (uncompressed).
• Allows C code to call managed code.
• Allows managed code to call into main application.

Fast:
• JIT engine provides the speed.
• Choice of languages.



 

21

 

New Found Users.

Mono is being adopted by game developers.
• For extending their own games.



 

22

 

Unity

Unity: 3D Game Development Made Easy
• C/C++ Core
• Mono for high-level operations.
• Multiple-languages: JavaScript, Boo and Mono.
• A language for each task.
• AI, behaviors implemented in high-level languages.



Demo
Unity-based games.



 

24

 

Second Life.

Virtual Reality World.
• Currently using their own LSL-scripting language.
• LSL is a C-like language. 
• Speed not very good.
• 3000 computers in August, growing at 300 machines/month.
• 12,000 distinct scripts, 3 million lines of script code (user code)

Mono:
• Gives 50-150x performance increase in scripts.
• Access to more languages, specialize the AI.
• Programs consume half the memory. 



GUI Toolkits



 

26

 

Three GUI Toolkits

Gtk#
• Native for Linux
• A .NET binding for all GNOME APIs
• Mike's presentation.

Windows.Forms:
• Almost there.
• Support for 1.1 on the initial release
• Chris and Rolf presentation.

Cocoa# and Dumbarton
• Framworks for building native OS/X applications
• Binds Cocoa, native API. 



 

27

 

Gtk# and the Desktop



Performance



 

29

 

Mono Runtime: Today.

1st generation: interpreter (2001)

2nd generation: x86 JIT compiler. 

3rd generation: cross platform JIT compiler.

4th generation: advanced optimizations.

5th generation: pre-compilation.

Conservative Gargage Collector
• non-compacting, non-moving.



 

30

 

Mono Runtime: Future.

New Optimizations:
• Massimiliano Mantione presentation.
• Zoltan Varga's linear-IL representation.
• Massi's new register allocation.
• New IR 

Garbage Collection
• Paolo Molaro's presentation
• Compacting Garbage Collection for Mono.



 

31

 

Tuning Existing Optimizations.

Inline turned on by default.
• It required tuning existing optimizations.
• Inline has a number of side effects.
• Tune optimizations for new default.

Results:
• 6% improvement XMLMark/SAX.
• 21% Fast Fourier Transform benchmark

– On x86, on x86-64, the difference is minimal.

• 2.82% (amd64), 5% (x86) SciMark improvements.
• 2.5% Mono bootstrap



 

32

 

New Optimizations, Today.

Partial Redundancy Elimination
• Implemented a full SSA-PRE pass
• Improves performance significantly for benchmarks
• Need to tune, lots of opportunities here.
• SSAPRE is not enabled by default, slows down JIT time.

Results:
• 5% XMLMark on x86-64 (no difference on x86)
• 22% SciMark improvement on x86

– 7% on x86-64

• Mono bootstrap (3% faster on hot-run, 6% slower on cold run)



 

33

 

New Optimizations: Ahead-of-Time

Ahead-of-Time Compilation:
• Pre-compiles code in a single pass before execution.
• Eliminates JIT startup problems.
• mcs hello.cs startup reduced in half (0.25 seconds).
• Allows heavier optimizations to be used

– As compilation time is not a consideration

Limitations:
• Not enabled by default in Mono 1.2
• Only available in select platforms (x86, x86-64).



 

34

 

New Optimizations: Work in Progress

Updated IR representation:
• Current IR engine works on trees, introduces black boxes
• New IR uses lists, more transparency for register allocator.

New Register Allocator:
• Updated 



Backup Slides



 

36

 

Platforms support.

32 bit:
• x86
• SPARC
• S390, IBM
• ARM family
• PowerPC

64 bits:
• x86-64
• s390x, IBM
• Itanium

Contributed ports:
• Alpha, MIPS (not finished).

Operating Systems:
• Linux
• Solaris
• MacOS X
• Windows
• Nokia/Maemo

AOT support:
• Based on ELF
• Shared Libraries
• Position Independent Code
• Only on x86 and x86-64



 

37

 

Mono Licensing.

Licenses chosen to maximize adoption.

Open Source licensed.
• Standalone compilers: GPL
• Mono Class libraries: MIT X11
• Runtime engine: LGPL

Novell retains the copyright
• Dual license for compiler and runtime under other terms.
• Novell relicenses Mono for embedded vendors.



Development of Mono



 

39

 

Mono Development

Development Groups:
• Novell, 18 developers.
• Mainsoft, 8 developers.

External contributors:
• 400+ collaborators over the history of Mono.
• 50+ active on a given month.

Not possible without open source community.



Languages



 

41

 

Popular Free Compilers.

C# 1.0, C# 2.0
• Work on C# 3.0 to start soon.

Java
• IKVM library provides Java compatibility.
• Uses GNU Classpath

Boo
• Explicitly typed, Python-inspired language..

IronPython
• Microsoft's own open source implementation.

Nemerle
Phalanger

• PHP compiler, commercial, recently open sourced.



 

42

 

Visual Basic.NET

New Compiler:
• A new from-scratch effort to implement VB.NET
• New version implements VB.NET 8 (Generics and My support)
• Written in VB.NET
• By Rolf Bjarne.

Old Compiler:
• Based on a very old mcs compiler
• Did not keep up with mcs updates, stalled.
• Not worth investing on it.



 

43

 

GCC CIL Backend.

GCC languages can target CIL
• Developed by ST MicroElectronics.
• Backend runs after GIMPLE phase, before RTL.
• Currently configured as a cross-compiler.

Coverage:
• Today: C and C99 as found on gcc.
• With some GNU extensions, but not everything supported
• (__asm__ is not supported).
• No managed extensions yet.

libc: under discussion (p/invoke or port?)
• Likely a CIL libc, to produce portable C applications.
• Possibly use native libc, with P/Invoke.



 

44

 

Other Compilers Under Development

PHP.NET, maybe phased out by Phalanger:
• Goolge Summer of Code (2005)

Ruby.NET:
• Queensland's compiler.



Garbage Collector



 

46

 

Compacting Garbage Collector.



 

47

 

Compacting Collector



 

48

 

Compacting Garbage Collector

Generational
• Precise
• Compacting

Multi-threaded
• With per-thread nurseries for fast memory allocation.
•



 

49

 

Nursery.



 

50

 

Nursery and Pinned Objects.



Other.



 

52

 

Developing with Mono.

MonoDevelop
• A GNOME IDE for .Net languages:

– Based on SharpDevelop.
– Integrated with Stetic

– MonoDoc.

MonoDevelop Session with Lluis.



 

53

 

Mono and VisualStudio 2003

Visual Studio plugin allows:
• Test Winforms and ASP.NET apps with Mono on Windows.
• Test with different Mono version

See: Session from Francisco.


