
October 24, 2006

The Mono JIT
optimizations and evolution

Massimiliano Mantione
massi@ximian.com

2

Current status

✔Five years old and fairly mature subsystem

✔Supports various optimizations and AOT
compilation

✔Ported to x86, PowerPC, Sparc, AMD64,
s390, s390x, ARM, IA64, while Alpha and
MIPS are underway

✔During these five years has already been
rewritten once

3

Compilation pipeline
CIL to IR

(inline calls) Branch optimizations SSA?

CPROP

SSAPRE

ABCREM

Local CPROP

Branch
optimizations

Decompose

Liveness

DEADCE

If not done,
DEADCE

Global
regalloc

BURG

Local
regalloc

Peephole

Back end

Yes

No

4

Inline and basic options on by default

✔Cprop, together with deadce, work in synergy
and are needed to make inline effective

✔Also a “tree propagation” hack is needed

✔Results
✔ XMLMark/SAX improved by 6%

✔ Fast Fourier Transformation improved by 21% on x86

✔ SciMark improved by 5% on x86 and 2.8% on amd64

✔ Mono bootstrap improved by 2.5%

✔Works on code in SSA form

5

Partial Redundancy Elimination

✔ Includes loop invariant code motion

✔Not enabled by default because it needs
tuning and slows the JIT down

✔Results
✔ XMLMark improved by 5% on x86

✔ Fast Fourier Transformation improved by 21% on x86

✔ SciMark improved by 22% on x86 (-7% on amd64)

✔ Mcs bootstrap improved by 3% on hot run (-6% cold)

✔

6

Intermediate Representation (IR)

✔Tree based IR

✔ CIL arguments and locals
correspond to local variables

✔ CIL “homeless values” (stack slots)
correspond to tree nodes

✔Opcodes are lower level than CIL ones

✔BURG is used for instruction selection and
linearization of the instruction trees

7

Current issues

✔The regalloc split uses registers suboptimally

✔ Callee saved registers are never used for global variables
(and vice-versa)

✔ The “treemover” is needed only because of this

✔Complex optimizations (SSAPRE) need
tuning, and interact badly with the regalloc

✔SSA based optimizations are not used by
default because they make the JIT slow

8

Ongoing work: linear IR

✔No more trees of instructions

✔ All CIL values go into virtual registers (vregs)

✔ BURG is no longer used

✔ All opcodes are decomposed early (low level IR)

✔Vregs are handled uniformly by all passes

✔This makes a unified regalloc possible

9

Ongoing work: GREG (Global REGalloc)

✔Unifies the current global and local ones

✔ Is more accurate
✔ Live ranges are exact, taking holes into account

✔ Can easily split live ranges at any point

✔ Uses “second chance binpacking” to exploit registers as much
as possible

✔ The information to tune it (weight number of uses, spill
costs...) is easily available

✔Works on code in SSA form

10

What's this SSA thing?

✔A “refined” form of IR,
where each variable use
can be reached by exactly
one definition

✔ Is generally considered
expensive to build, but...

✔ ...makes everything easier
and faster!

b = ...
r = ...

x = b + r

k = f (x)

x = r - b

x
1
 = b + r

x
2
 = r - b

x
3
=  (x

1
,x

2
)

x
3

11

How does SSA help GREG?

✔ In SSA use-definition relations are very natural

✔Representing each move (also spills) as an SSA

definition takes advantage of this simplicity

✔With SSA, high level information on values (think

register rematerialization) is readily available

✔A register allocator already does the job of

“undoing SSA form”, and actually benefits from

SSA while doing this job

12

Profiling the SSA code on which
GREG is based (mono –compile-all mscorlib.dll)

✔With callgrind
✔ SSA, liveness computation and deadce add 15.68%

✔ Old liveness 7.86%, local deadce 6.83%, local cprop 6.16%

✔With oprofile
✔ SSA, liveness computation and deadce add 7.23%

✔ Old liveness 3.96%, local deadce 3.69%, local cprop 3.77%

✔With 'time' (wall clock measurement)
✔ SSA, liveness computation and deadce add 11.84%

13

Advantages of going fully SSA

✔Global optimizations available by default
(instead of the local versions we have now)

✔No more separate pilelines when more
powerful optimizations are enabled

✔Every data flow analysis pass gets faster
(also liveness computation)

14

Multilevel IR

✔Alias analysis becomes feasible

✔High level reasoning becomes faster

✔JIT code becomes cleaner

✔Eventually, the results of high level analysis
passes will be used for interprocedural
optimizations

15

Wrapping up:

✔Lots of nice things to do!

✔ In little time... (we want them all and now)

✔Which means: business as usual

✔For discussion:

✔ Post on “mono-devel-list@ximian.com”

✔ Or to me, at “massi@ximian.com”

✔ ...or let's just talk now!

mailto:massi@ximian.com

